Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
J. appl. oral sci ; 24(1): 31-36, Jan.-Feb. 2016. tab
Article in English | LILACS, BBO | ID: lil-777362

ABSTRACT

ABSTRACT Objectives To assess the re-hardening potential of enamel matrix derivatives (EMD) and self-assembling peptides in vitro, hypothesizing that these materials may increase the mineralization of artificial carious lesions and improve hardness profiles. Material and Methods Forty-eight enamel samples were prepared from extracted bovine lower central incisors. After embedding and polishing, nail varnish was applied, leaving a defined test area. One third of this area was covered with a flowable composite (non-demineralized control). The remaining area was demineralized in an acidic buffer solution for 18 d to simulate a carious lesion. Half the demineralized area was then covered with composite (demineralized control), while the last third was left open for three test and one control treatments: (A) Application of enamel-matrix proteins (EMD - lyophilized protein fractions dissolved in acetic acid, Straumann), (B) self-assembling peptides (SAP, Curodont), or (C) amine fluoride solution (Am-F, GABA) for 5 min each. Untreated samples (D) served as control. After treatment, samples were immersed in artificial saliva for four weeks (remineralization phase) and microhardness (Knoop) depth profiles (25-300 µm) were obtained at sections. Two-way ANOVA was calculated to determine differences between the areas (re-hardening or softening). Results Decalcification resulted in significant softening of the subsurface enamel in all groups (A-D). A significant re-hardening up to 125 µm was observed in the EMD and SAP groups. Conclusions This study showed that EMD and SAP were able to improve the hardness profiles when applied to deep demineralized artificial lesions. However, further research is needed to verify and improve this observed effect.


Subject(s)
Animals , Cattle , Tooth Demineralization , Dental Caries , Dental Enamel/chemistry , Dental Enamel Proteins/chemistry , Reference Values , Saliva, Artificial/chemistry , Surface Properties , Time Factors , Tooth Remineralization/methods , Materials Testing , Reproducibility of Results , Analysis of Variance , Statistics, Nonparametric , Hardness
2.
J. appl. oral sci ; 21(1): 48-55, 2013. ilus, tab
Article in English | LILACS, BBO | ID: lil-684995

ABSTRACT

Objective: To investigate the microbial adherence and colonization of a polyspecies biofilm on 7 differently processed titanium surfaces. Material and Methods: Six-species biofilms were formed anaerobically on 5-mm-diameter sterilized, saliva-preconditioned titanium discs. Material surfaces used were either machined, stained, acid-etched or sandblasted/acid-etched (SLA). Samples of the latter two materials were also provided in a chemically modified form, with increased wettability characteristics. Surface roughness and contact angles of all materials were determined. The discs were then incubated anaerobically for up to 16.5 h. Initial microbial adherence was evaluated after 20 min incubation and further colonization after 2, 4, 8, and 16.5 h using non-selective and selective culture techniques. Results at different time points were compared using ANOVA and Scheffé post hoc analysis. Results: The mean differences in microorganisms colonizing after the first 20 min were in a very narrow range (4.5 to 4.8 log CFU). At up to 16.5 h, the modified SLA surface exhibited the highest values for colonization (6.9±0.2 log CFU, p<0.05) but increasing growth was observed on all test surfaces over time. Discrepancies among bacterial strains on the differently crafted titanium surfaces were very similar to those described for total log CFU. F. nucleatum was below the detection limit on all surfaces after 4 h. Conclusion: Within the limitations of this in vitro study, surface roughness had a moderate influence on biofilm formation, while wettability did not seem to influence biofilm formation under the experimental conditions described. The modified SLA surface showed the highest trend for bacterial colonization.


Subject(s)
Humans , Biofilms/growth & development , Dental Implants/microbiology , Titanium , Analysis of Variance , Bacterial Adhesion , Colony Count, Microbial , Materials Testing , Microscopy, Electron, Scanning , Surface Properties , Saliva/microbiology , Time Factors , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL